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By discretizing the magnetic field formulation for a wave propagation problem on a pair of dual interlocked grids, we obtain a
discrete formulation which is complementary to the electric field formulation discretized on the same grids. In this work, we present
how the h-formulation is obtained in the Discrete Geometric Approach framework; then we use it to devise an adaptive refinement
scheme. Finally, considerations on the convergence of the discrete h-formulation with respect to the discrete electric field one are
discussed.
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I. INTRODUCTION

ELECTROMAGNETIC WAVE PROPAGATION is usually
treated by solving a problem where the unknown is the

electric field e. According to the Discrete Geometric Approach,
this leads to associate electric voltages with primal grid edges
and magnetomotive forces to the dual grid edges. However,
it is well known that the electromagnetic problem can be
formulated also in terms of the magnetic field h. The idea
behind this work is to swap the two grids. In this way
we introduce a novel discrete h-formulation for the wave
propagation problem, where the magnetomotive forces are
associated to the primal grid, while the electromotive forces to
the dual one. For this formulation, both impedance boundary
conditions and plane wave excitation are also introduced in a
novel complementary way. A main advantage of the proposed
complementary formulations is shown, by deriving an effective
adaptive mesh refinement scheme.

II. CONTINUOUS WAVE PROPAGATION PROBLEM

From time harmonic Maxwell’s equations at angular fre-
quency ω in a bounded domain Ω

∇× e = −iωb, ∇× h = iωd,

where d, e, h, b are respectively electric displacement, electric,
magnetic and magnetic induction fields together with the
constitutive relations

d = εe, h = νb,

where ν and ε are symmetric positive definite material ten-
sors, the e-formulation of electromagnetic wave propagation
problem

∇× (ν∇× e)− ω2εe = 0, (1)

can be derived [3]. Similarly, the h-formulation of the electro-
magnetic problem becomes

∇× (ξ∇× h)− ω2µh = 0, (2)

where ξ = ε−1 and µ = ν−1.
Usual Dirichlet and Neumann boundary conditions can be

applied to the problem (2) to impose Perfect Electric Conduc-
tor (n×e = 0) and Perfect Magnetic Conductor (n×h = 0)
conditions on ∂Ω with normal n. In the h-formulation (2),
PEC is specified as a Neumann BC, while PMC is specified
as a Dirichlet BC.

Regarding the impedance boundary condition used to con-
strain the electric and magnetic fields on a portion of ∂Ω, in [1]
we showed that the discrete counterpart of the e-formulation
requires the construction of an admittance matrix MY . In this
work we will show that in the h-formulation the construction
of an impedance matrix MZ is needed.

III. DISCRETE COUNTERPART OF e-FORMULATION

Numerical treatment of (1) requires the discretization of Ω,
which is obtained by means of a primal tetrahedral grid G
and a barycentric dual grid G̃ induced by G. The electromag-
netic quantities are associated with these interlocked grids as
follows:

• electromotive force Ui to edges ei ∈ G;
• magnetic flux Φi to faces fi ∈ G;
• magnetomotive force Fi to edges ẽi ∈ G̃;
• electric flux Ψi to faces f̃i ∈ G̃.

Problem (1) is discretized as [4], [2]

(CTMνC− ω2Mε)U = 0, (3)

where C is the face-edge incidence matrix, Mν and Mε are
the constitutive matrices as described in [5] and U is the array
of the unknown voltages along the primal edges. Introducing
the impedance boundary conditions, the problem

(CTMνC− ω2Mε)U + iωMY U = −2iωFb
−
, (4)

is obtained [2], where the term Fb
−

is an excitation applied
on a portion of ∂Ω.



IV. DISCRETE COUNTERPART OF h-FORMULATION

The idea behind the complementary wave propagation prob-
lem is to exchange the roles G and G̃, by associating:
• electromotive force Ui to edges ẽi ∈ G̃;
• magnetic flux Φi to faces f̃i ∈ G̃;
• magnetomotive force Fi to edges ei ∈ G;
• electric flux Ψi to faces fi ∈ G.

In this way, complementary discrete Maxwell equations are
then written as

CF = iωΨ, (5)

CTU = −iωΦ, (6)
U = MξΨ, (7)
Φ = MµF. (8)

Solving (5) for Ψ and substituting it in (7) and then in (6), the
complementary wave propagation problem results to be

CTMξCF− ω2MµF = 0, (9)

where Mξ and Mµ are the counterparts of Mν and Mε,
while F is the magnetomotive force along primal edges.
Impedance boundary condition and plane wave excitation can
be introduced by adding two terms to (9), obtaining

CTMξCF− ω2MµF + iωMZF = 2iωUb−, (10)

where Ub− is the excitation applied on a portion of ∂Ω.

V. ADAPTIVE MESH REFINEMENT

We propose an adaptive mesh refinement scheme based
on the comparison of the electromagnetic energies calculated
from the usual formulation and the complementary formulation
respectively. The main idea behind the scheme is to refine the
mesh in the subregions of Ω where the relative error between
calculated energies is maximal (Fig. 1). The entire idea can be
summarized in the following iterative procedure:

1) solve problems (4) and (10),
2) interpolate fields in the mesh volumes vi, obtaining

primal and complementary fields ep, hp, ed and hd,
3) for each vi, let ∆e = ep − ed and ∆h = hp − hd

then calculate the energy ∆w =
∫
vi

∆e · ε∆e dv +∫
vi

∆h · µ∆h dv
4) let T be the set of the tetrahedra in which Ω is dis-

cretized: calculate error ε(t) = ∆w/wp for each vi ∈ T ,
where wp =

∫
vi
ep · εep dv +

∫
vi
hp · µhp dv

5) let k ∈ [0, 1] and ε(X ) =
∑
x∈X ε(x),

a) make a set Th ⊂ T such that
card (Th) = k · card (T ) and ε(Th) is maximized,

b) make a set Tl = T \Th that contains the remaining
tetrahedra,

6) for each tetrahedron vi ∈ Th, divide its radius by rh,
7) for each tetrahedron vi ∈ Tl, divide its radius by rl.

We obtained good results with k = 0.1, rh = 3 and rl = 1.2.
Numerical experuments show that the two formulations, even
if not providing lower and upper bounds of analytic quantities
like in stationary problems, converge to the same solution and

thus can be effectively exploited in adaptive mesh refinement.

Fig. 1. Four steps of adaptive mesh refinement on a section of rectangular
waveguide excited with TE10 mode. The adaptive scheme correctly refines the
mesh near borders, where the variation of the field is higher.

VI. NUMERICAL EXPERIMENTS ON THE CONVERGENCE OF
THE TWO DISCRETE FORMULATIONS

We investigated numerically, for a number of wave propa-
gation problems, the convergence behaviour of the two for-
mulations by calculating some energetic quantities at each
refinement step. As an example, the flux of the Poynting vector
across waveguide ports was evaluated by calculating

Pp =
1

2
Re
[
UbT (MY Ub)∗

]
Pd =

1

2
Re
[
Fb∗T (MZFb)

]
for problems (4) and (10) respectively. In addition electric and
magnetic energies inside Ω were also considered. From the
numerical experiments, the two formulations are convergent
but they fail to give an upper and a lower bound of the true
solution, as happens in eddy current problems[6].

VII. CONCLUSIONS

Discrete complementary formulation of wave propagation
problem was presented. Using both discrete e-field and h-field
formulations, an adaptive refinement scheme was devised.
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